Monday, 18 May 2015

Warmholes

A wormhole, also known as "Einstein-Rosen Bridge", is a hypothetical topological feature that would fundamentally be a shortcut through spacetime. A wormhole is much like a tunnel with two ends, each in separate points in spacetime.
For a simplified notion of a wormhole, visualize space as a two-dimensional (2D) surface. In this case, a wormhole can be pictured as a hole in that surface that leads into a 3D tube (the inside surface of a cylinder). This tube then re-emerges at another location on the 2D surface with a similar hole as the entrance. An actual wormhole would be analogous to this, but with the spatial dimensions raised by one. For example, instead of circular holes on a 2D plane, the entry and exit points could be visualized as spheres in 3D space.
Researchers have no observational evidence for wormholes, but the equations of the theory of general relativity have valid solutions that contain wormholes. Because of its robust theoretical strength, a wormhole is one of the great physics metaphors for teaching general relativity. The first type of wormhole solution discovered was the Schwarzschild wormhole, which would be present in the Schwarzschild metric describing an eternal black hole, but it was found that it would collapse too quickly for anything to cross from one end to the other. Wormholes that could be crossed in both directions, known as traversable wormholes, would only be possible if exotic matter with negative energy density could be used to stabilize them.
The Casimir effect shows that quantum field theory allows the energy density in certain regions of space to be negative relative to the ordinary vacuum energy, and it has been shown theoretically that quantum field theory allows states where energy can be arbitrarily negative at a given point.[1] Many physicists, such as Stephen Hawking,[2] Kip Thorne[3] and others,[4][5][6] therefore argue that such effects might make it possible to stabilize a traversable wormhole. Physicists have not found any natural process that would be predicted to form a wormhole naturally in the context of general relativity, although the quantum foam hypothesis is sometimes used to suggest that tiny wormholes might appear and disappear spontaneously at the Planck scale,[7][8] and stable versions of such wormholes have been suggested as dark matter candidates.[9][10] It has also been proposed that, if a tiny wormhole held open by a negative-mass cosmic string had appeared around the time of the Big Bang, it could have been inflated to macroscopic size by cosmic inflation.[11]
The American theoretical physicist John Archibald Wheeler coined the term wormhole in 1957; the German mathematician Hermann Weyl, however, had proposed the wormhole theory in 1921, in connection with mass analysis of electromagnetic field energy.

No comments:

Post a Comment